Get started faster with data-driven decisions
Finding the ideal technology stack for serving AI models is a significant industry challenge. Historically, customers have had to navigate rapidly evolving technologies, the switching costs that impact hardware choices, and hundreds of thousands of possible deployment architectures. This inherent complexity makes it difficult to quickly achieve the best price-performance for your inference environment.
The GKE Inference Quickstart, now generally available, can save you time, improve performance, and reduce costs when deploying AI workloads by helping determine the right accelerator for your workloads in the right configuration, suggesting the best accelerators, model server, and scaling configuration for your AI/ML inference applications. New improvements to GKE Inference Quickstart include cost insights and benchmarked performance best practices, so you can easily compare costs and understand latency profiles, saving you months on evaluation and qualification.
GKE Inference Quickstart’s recommendations are grounded in a living repository of model and accelerator performance data that we generate by benchmarking our GPU and TPU accelerators against leading large language models like Llama, Mixtral, and Gemma more than 100 times per week. This extensive performance data is then enriched with the same storage, network, and software optimizations that power AI inferencing on Google’s global-scale services like Gemini, Search, and YouTube.
Let’s say you’re tasked with deploying a new, public-facing chatbot. The goal is to provide fast, high-quality responses at the lowest cost. Until now, finding the most optimal and cost-effective solution for deploying AI models was a significant challenge. Developers and engineers had to rely on a painstaking process of trial and error. This involved manually benchmarking countless combinations of different models, accelerators, and serving architectures, with all the data logged into a spreadsheet to calculate the cost per query for each scenario. This manual, weeks-long, or even months-long, project was prone to human error and offered no guarantee that the best possible solution was ever found.
Using Google Colab and the built-in optimizations in the Google Cloud console, GKE Inference Quickstart lets you choose the most cost-effective accelerators for, say, serving a Llama 3-based chatbot application that needs a TTFT of less than 500ms. These recommendations are deployable manifests, making it easy to choose a technology stack that you can provision from GKE in your Google Cloud environment. With GKE Inference Quickstart, your evaluation and qualification effort has gone from months to days.
Source Credit: https://cloud.google.com/blog/products/ai-machine-learning/gke-inference-gateway-and-quickstart-are-ga/
